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tion 

an alternative treatment is given of the 

iby Professor Stoker in his report "Dynarai- 

 ««t?ory for Treating the Motion of Cold and Warm Fronts 

in the Atmosphere." The description of the phenomena which 

we wish to explain and the formulation of the basic mathe- 

matical equations are discussed in detail in that report and 

will not be repeated here. The present method starts from 

the same basic equations but differs in the way in which 

these equations (which are too difficult to solve without 

further simplification) are approximated. 

The propagation of disturbances on a frontal surface 

appears to fall into two parts. First, the initial distur- 

bance moves along the discontinuity surface with its ampli- 

tude (i.e. the displacement of the surface normal to its un- 

disturbed position) increasing; then, at a more advanced 

stagef the amplitude remains roughly constant and the cold 

front begins to overtake the warm front, leading ultimately 

to occlusion. One may expect that some qualitative features 

of the first part of the propagation could be obtained from 

a linearized small-perturbation procedure, and this has been 

investigated by various authors (see Kaurwitz [5], p. 3C7); 

however, the occlusion process and the events leading up to 

it are certainly nonlinear phenomena. This later develop- 

ment is considered here, and an approximate treatment, which 

seems to be capable of explaining some of the results of ob- 

servation, Is presented* 

It should be remarked at the outset that, in view of 

the complexity of the problem, any theory which includes 

some of the main effects or gives some qualitative insight 
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Dynamics of Meteorological Fronts 

by 0. B. Whithara 

Sec* 1.  Introduction 

In this paper, an alternative treatment Is given of the 

problem described by Professor Stoker In his report "Dynami- 

cal Theory for Treating the Motion of Cold and Warm Fronts 

In the Atmosphere." The description of the phenomena whloh 

we wish to explain and the formulation of the basic mathe- 

matical equations ar« discussed In detail In that report and 

will not be repeated here. The present method starts from 

the same basic equations but differs In the way In which 

these equations (which are too difficult to solve without 

further simplification) are approximated. 

The propagation of disturbances on a frontal surface 

appears to fall into two parts. First, the Initial distur- 

bance moves along the discontinuity surface with Its ampli- 

tude (I.e. the displacement of the surface normal to its un- 

disturbed position) Increasing; then, at a more advanced 

vtage, the amplitude remains roughly constant and the cold 

front begins to overtake the warm front, leading ultimately 

to occlusion. One may expect that some qualitative features 

of the first part of the propagation could be obtained from 

a linearised small-perturbation procedure, and this has been 

investigated by various authors (see Raurwitz [5], p. 307); 

however, the occlusion process and the events leading up to 

it are certainly nonlinear phenomena. This later develop- 

ment is considered here, and an approximate treatment, which 

seems to be capable of explaining some of the results of ob- 

servation, is presented. 

It should be remarked at the outset that, in view of 

the complexity of the problem, any theory which includes 

some of th* main effects or gives some qualitative Insight 
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Into the problem is considered to be of value, even though 
it nay be lacking in other respects, and may not apply in 
every situation. The present work should be interpreted in 
this light. 

Sec. 2.    Approximation to the equations of motion 

The equations of motion for the components u and v of 
the velocity in the cold air and ths height, h, of the 

frontal surface are 

(1) ht + (uh)x • (vh)y * 0, 

(2) 

(3) 

u. + uu + vu_ - 2COv sin 4? = -kh . z x y »      x 
P-iU, 

vt • uvx • w • 2 CO sin <p(u ±-±) = -kh. 

(p and p, are the densities of the cold and warm air, and 
u^ and u. are the undisturbed velocities; CO is the angular 

Pi velocity of the earth, <p   is the latitude, and k = g(l - -r*1).) 

In the undisturbed state, u = u , v = 0, h = h ; hence, the 

well-known Margules formula is obtained: 

dh 

3T " E *-<-? (4) a -2a =* gcosm p(apL m    K 

In general, u and u^ may be functions of y but it will of- 
ten be convenient to take the simple case of constant u and o 
u, and to neglect the variation of <p   with y, so that (X is 
constant (i.e. the cold air forms a wedge of angle Oc). 

Now, for the situation which actually arises, QC  is 
small (a typical value being 1/200) and the theory developed 
here is an attempt to utilize this fact.  It is assumed that 

in the disturbed motion the rates of change of the flow 
quantities in the direction of y remain small and of the 

same order as OC; on the other hand, h and u may be finite 
compared to 0C, and we are interested in non-small values of 

-Z2LZ 
•'itf?1in 
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them for otherwise we would be reduced to something like a 

linear theory. Then, in view of the small change of h in 

the y-direction and the smallness of the Coriolis term, it 

is expected that the main motion will be in the x-direction, 

i.e. the "crossflow," v, wil? be of smaller order than u. 

Thus, approximations are made that y-derlvatlves are of 

smaller order than x-derlvatives and that v/u is small. 

More precisely, suppose h/h * O(CX); then, since 

2COuQ sin p   * O(kOC) from (4), equations (2) and (») show 

that Dv/Dt a <XDu/Dt. Hence, unless v builds up over a 

large period of time whereas u remains bounded, v/u will be 

O(Cfc). Moreover, consistent with h/h ~ O(CC), we should 

expect UyAa^ * 0(0C), vVvx * 0((X). With these approxima- 

tions, the ratios VVL
J/^'r\)»  ^y/^x*' and (*n)V(uh)x are 

0(0C2), and, from (4), 2G)v sin tf>/kh a 0(J- r1) * 0(0t2); 
o x 

therefore, neglecting these small terms (which are of the 

second order in small quantities), the equations of motion 

become 

(5) h. • uh • hu = 0, 
VAX 

(6) ut + uux "*" ^x * °* 

(7) vt • uvx * 260 sin ^(-—^ - u) - kh . 

In the first two equations, y now enters only as a parameter, 

but the solution depends strongly on y, as will be seen, 

through the conditions (u -*• u , h -e* h (y) as |x| -*• oo) 

under which the equations are solved. When u and h are 

known, v is found from the linear equation H). 

Of course, in many cases the approximations made above 

may not be true; for example, they would not apply when the 

amplitude of the disturbance is small compared to its wave 

length, and thus could not be used to study the initial 

.^r-*.•»- _ . -.., —«^«° 
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formation of frontal disturbances. Again, it may be that v 

doea grow continually until it ia no longer negligible. How* 

ever, the approximate equations (5), (6), (7) do exhibit 

some features of the motion which are expected to be present 

even when other effects (neglected by them) also play an im- 

portant role. 

Sec. 5. Solution of the approximate equations 

Equations (5) and (6) have already been studied in 
2 

great detail, since, on substituting c * kh, they are iden- 

tical with the equations for the velocity u and sound speed 

c in the one-dimensional unsteady flow of a gas with ratio 

of specific heats equal to 2. With k -  gp they are the 
equations for waves on shallow water of density p (see (6]); 

with the present k they have been used by Freeman (3] to 

discuss waves on a discontinuity surface when there is no 

dependence on y, i.e. the undisturbed surface is at a uni- 

form height above the ground and the disturbance is a func- 

tion of x and t only.  In the problem we are considering, we 

have essentially a Freeman type problem to solve in each 

plane y *» constant, with the initial conditions depending on 

the parameter y.  Now, we consider the motion in any such 

plane. 
o 

Introducing c    =* kh,   (5) and  (6)  become 

(8) 2c*  • 2ue     + cu    * 0, 
w XX 

(9) ut  + uux + 2ccx = 0, 

or. 

(JL +  (u + c)-|-)(u + 2c) 
d t "       ox 

=  (ut  + uux + 2c<0   •  (2ct  + 2uc
x 

+ cu
x) 

» 0; 
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(«) hence, u + 2c la "constant"   on each positive characteris- 
tic curve dx/dt =* u + c, and u - 2c Is "constant" on each 
negative characteristic curve dx/dt = u - c.     This char- 
acteristic form of the equations already enables any Initial 
value problem to be solved numerically (by the well-known 

"method of characteristics"), but many important problems 
can be solved without numerical work by use of the so-called 

"simple wave" solutions. The latter are solutions for which 
either u - 2c or u + 2c Is a "constant," not only on each of 

the corresponding set of characteristics separately, but 
throughout the disturbed region. For example, suppose that 
u - 2c is "constant" in the whole region. Then, since in 
addition u + 2c is a "constant" on each positive character- 

istic dx/dt - u • c, it follows that u and c must be indivi- 

dually "constant" on each of these characteristics.  Hence 
in the (x,t)-plane these positive characteristics form a set 

of straight lines, the slopes being determined by the values 
of u -f c on them. 

An example of the way in which such simple waves arise 
may be seen in the following problem (Figure 1, see next 

page). Suppose that at t * 0, arbitrary values of u and c 
are given In the range x, < x < x„, and that outside this 
range u »  u^, c * c^, where u^ and e are "constant." For o      o       o     o 
the moment we treat the case in which c is always positive 
and greater than u. Consider the negative characteristic i i 
BCE through x » x«.  It is clear that along it, and along 
any negative characteristic to the right of it, 

-_ ,  

Henceforth, quotation marks around the word constant 
mean that the quantity is independent of x and t; the 
value of the "constant depends on y. 

The case of h = 0, h 4* 0 at a certain point, will arise 

later, and it should be noted that these results do not 
reduce, at c = 0, to u = constant on dx/dt * u, since al- 

though c * 0, o * co and the derivation breaks down; In 
fact the change of u on dx/dt * u ia u*. • uu, » -kh . 

v     X      X 

.   ; 

i^^taitt 
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U - 2C = U  - 2c since all those negative characteristics 

u • 2c 

1 2 

B 

Pig. 1 

meet t 0 at points where u = u , c ~ c Similarly, to 

the left of the positive characteristic ACF, u • 2c « u • 2c , o    o 
In particular, then, for points in ECP both the above condi- 

tions are satisfied, and we have u =* u , 
o c * c^ there.  Of o 

course, the region x > x« is undisturbed until the first 

IT  III W 



35 

wavelet, the positive characteristic BO: x * x2 • (u + c0^» 

arrives. Hence, the propagation of the disturbance to the 

right is confined between characteristics BG and CF; 

u • 2c = uQ • 2cQ in this region so that it is a simple wave 

with the positive characteristics forming a set of straight 

lines, and u and c "constant" along each of them. Similarly 

the propagation to the left is a simple wave between AD and 

CE, with u + 8e « u + 2cQ.  In the "interaction" region, 

ABC, it is necessary to use a rather devious numerical 

method. Two points 1 and 2 (Figure 2) are taken close to- 

gether on the x-axls where u and c are known, and short 

3 

6 -> x 

Fig. 2 

approximate characteristic segments dx/dt = u, • c, , 

dx/dt - Ug - Cg, are constructed through the points 1 and 2 

respectively (here subscripts denote values at the corre- 

sponding points); in this way, a point 3, the intersection 

of the two characteristics, is obtained  The values of u, 

and c- satisfy the two equations u, • 2c, * u- • 2c-» 

Uo - 2o« * Ug - 2os which are the characteristic relations 

between u and c on the positive and negative characteristics 

respectively; hence u^ and c3 are easily found. The values 

at 5 can be obtained from 2 and 4, 7 from 4 and 6 and so on. 

i •• 



36 

The solution In the region ABC can then be obtained by repe- 

titions of this process. When the values of u and c are 

known on BC, the simple wave CPOB is obtained by drawing 

straight lines through appropriate points on BC with slopes 

equal to the values of u + c at these points. Similarly the 

simple wave ADEC may be constructed. When the straight 

characteristics of the simple wave are converging, the con- 

tinuous solution is valid only in the region before they 

overlap. After they overlap a discontinuous Jump of u and c 

across a certain curve must be introduced, analogous to the 

shocks of gas dynamics and the bores of shallow water theory; 
this topic is postponed until Section 4. 

The above argument showing the separation of an arbi- 

trary initial disturbance into two simple waves applies when 

c is sufficiently large (i.e. y sufficiently large), but 

does not apply when the plane y * constant Includes points 

where the frontal surface meets the ground. Consider the 

case when c * 0 at A and C (Figure 3) and suppose that there 

Pig. S 

A 
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Is no fluid between A And C.  The locus In the (z,t)-plane 

of the point where c * 0 Is dx/dt = u since eauatlon (9) 

shows that, when c = 0, c«. • uc_ * 0, I.e. c Is constant on 

dx/dt = u. Thus both characteristic directions dx/dt » u • c 

are tangent to the locus of c ~  0. Equation (9) shows that 

the rate of change of u along the curve is 

(10) u. + uu_ = -kh , 

Therefore, if h ± 0, the characteristic relations (u • 2c * 

"constant") which degenerate into u = "constant" on c ' 0, 

are not satisfied, and the curve dx/dt = u is not a charac- 

teristic but is an envelope of both sets of characteristics; 

if h * 0, then u remains constant, and dx/dt = u becomes a 

characteristic. Again we can argue that to the right of the 

negative characteristic through B, u - 2c - u - 2c , and 

there is a simple wave on the positive characteristics; how- 

ever, between AA' and BB', the disturbance would have to be 

determined numerically. 

One general remark may be made here. Along AA', h > 0, 

and therefore from (10), u decreases; on CC', h< 0, and 

therefore u increases.  Of course the values of u will be- 

come constant after a certain time, but the result shows at 

least some tendency for the gap to close up. This is of 

some Interest since it can play a role in explaining why oc- 

clusion occurs.  (Another reason for the overtaking of a 

warm front by a cold front will be given In Section 4.) 

Now although it is seen that an Initial disturbance (in 

which u «.nd c are both given arbitrarily) does not separate 

completely into two simple waves, the author still feels 

that it is relevant to consider the case of a disturbed re- 

gion which is entirely a simple wave (for all y, not only 

away from the intersection with the ground). After all, 

setting up an initial value problem is not necessarily the 

correct approach for our problem. The frontal disturbances 

are initiated in some complicated way which certainly 
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Involves Influences (the interference of a mountain range, 

for example) which are not included in our basic formulation 

at all. These may even be more like the piston problems, 

etc. of gas dynamics which are known to produce simple 

waves.  Moreover, the present theory makes no claim to de- 

scribe the whole development, and is explicitly directed to 

the later stages which lead to occlusion. We are dealing 

here with a fully developed disturbance which may have al- 

ready separated into the two disturbances propagating in op- 

posite directions (a typical feature of problems of wave 

propagation).  In any case, our object is to see whether the 

observed phenomena are possible within the framework of our 

approximate theory; for this purpose it is natural to con- 

sider first the simple waves which are known to have great 

significance in other problems. 

In particular the simple wave describing propagation in 

the direction of increasing x is considered, since fronts 

are nearly always observed to be moving eastward (in the x- 

direction) over the United States. The solution of (5) and 

(6) which is chosen, then, has u - 2c - "constant," i.e. 

(11) u - 2c * A(y), 

say, throughout the region.  In addition, as explained before, we 

know that u+2c Is a function only of y on each positive char- 

acteristic dx/dt * u + c; hence, u and c are individually 

functions only of y on each of these characteristics. 

Therefore, the characteristic equation may be integrated to 

yield 

(12) x = £ + (u + c)t, 

where ^ Is the value of x at t * 0. Now, the values of u 

and c on the characteristic (12) are exactly the same as the 

values (for the same y) at the point t * 0, x * ^ ; there- 

fore, if we suppose, for example, that c Is a given function 

£ ̂ ^^^^I^^^^MB^HBMOU 



39 

C(x,y) at t * 0, the value of c on (12) Is C(^,y) and the 

value of u Is, from (11), A(y) • 2C(^,y). Thus, the com- 

plete solution Is 

c = C(£,y), 

(13) < u = A(y) • 2C(£,y), 

/ x = ^ • jA(y) • 3C(£,y) | t. 

(Although the arbitrary function occurring In a simple wave 

may be specified In other ways, it Is convenient for our 

purposes to give the value of h, and hence c, at t = 0.) At 

large distances from the disturbance (i.e. as |x| -*• co), u 

and c must have their undisturbed values u (y) and c (y), 

respectively; hence, A(y) is determined by (11) to be 

(14) A(y) = uQ(y) - 2cQ(y). 

It should be stressed that, in using the solution (13), it 

is much easier to fix attention on individual planes y = con- 

stant, study the solutions as functions of x and t in each 

plane with y as a parameter, and combine them finally to 

give the full picture. 

Turning now to the equation (7) for v, it is convenient 

(since u and kh = c are functions of ^, y) to change vari- 

ables from (x,y,t) to (^,y,t). Writing the derivatives in 

the old system on the left and those In the new on the 

right, we have 

nc\     3 3_ + r      & 3  _ y      3 3  _ 3     ^      d U5;   at   at   *t a^  •   ax   *x a^ >  T} T}   *J7%' 

and,   from  (13), 

{16)   ?t - - m^t '   sx -1 • selt -   sy
s-  l » jclt 

(A1   • 3Cg)t 
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where C^Cxjj) and Cg(x,y) denote 3C(x,y)/3x and dc(x,y}/dy, 

respectively. Equation (7) becomes 

<17> IT - T-bz-e -§|- - - r-Fk-i^ • A'tcl> 

+ 2G> sin  «X"D-^  - A  - 2C). 

The details  of  the derivation of the solution of this  equa- 
tion are not of sufficient  importance  to be  included;   it may 
easily be verified that the general solution is 

(18) v  =* 2fc2(%,j)  &%  +   j C(A'   - 6CJ  sin  (p) 

+ 2CO sin ^(-^ - A) | t 

+  (A'   - 2CO sin  <p)%  • P|03t +fc2 &%,j I, 

where P is an arbitrary function to be determined from some 

initial condition. For example, if it Is assumed that 

v * V(x,y) at t =0 then F is specified by 

(19) FJJ"c2(x,y) dx,yj =• V(x,y) - 2 f Cg(x,y) dx 

- (A' - 2CO sin <p)x. 

The simple wave on the other set of characteristics, 

with u + 2e a function only of y, and the corresponding 

value of v may be described similarly. 

Sec. 4. The propagation of warm and cold fronts 

The behavior of warm and cold fronts is now discussed 

on the basis of the simple wave solution established in Sec- 

tion 3. Across the United States, the intersection of the 

frontal surface with the ground lies roughly east-west, in 

general; vu is positive and u may be of either sign (if 

S-a^i^'r- 
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u > 0, it must be leas than PIUT/PO in order that OC > 0 In 

(4)). A disturbance on the frontal surface appears fre- 

quently to be a northward push of warm air and nearly always 

is observed to propagate eastward (increasing x) so that a 

warm front is followed by a cold front as shown In Figure 4 

(see next page).  This being the case, the simple wave solu- 

tion on the "positive11 characteristics would appear to be 

the relevant one, and is the one which will be described. 

It may be remarked, however, that as far as the theory devel- 

oped above is concerned the disturbance could be propagated 

either on positive or negative characteristics, or both. 

The propagation velocities u + c are positive and negative, 

respectively, for sufficiently large y (and hence large c), 

but near the intersection with the ground, where c is snail, 

the direction of propagation would be the same as u in both 

cases. Hence, if u is usually positive (west wind) there 

would be a tendency for the fronts observed at the ground to 

propagate eastward in all cases. There is some evidence 

that u is more frequently positive than negative.  Apart 

from this small argument, the explanation for the eastward 

movement of the fronts must lie outside the scope of this 

theory. 

We suppose, now, that there is a simple wave on a set 

of positive characteristics with u - 2c = u - 2c  through- 

out, as given by (11) and (14).  Immediately an important 

result is obtained: At the intersection of the surface with 

the ground whore c = 0, we have u * u* * u - 2c .  If the Too 
approximate values  u    * constant,   OC  = h'(y)  = constant, 
c    * Vkh - VOCky  ,   are  taken, 

(20) uf = uQ  - 2 v/ocky , 

so that uf decreases with y.  (On the cold front, (20) is 

gradually modified as explained below, but remains true on 

the warm front.)  Moreover, in the plane y = constant, (13) 

gives 
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(21) 5 + | u0 - 2 \/Oky 11 

when C(^,y) • 0; hence, since ^ is the x-coordinate of the 

front at t * 0, (21) shows that the front has raovsd to the 

right a distance $u - 2\/ttky \ t at time t. This distance 

decreases with y; therefore, on the basis of this alone, a 

warm and cold front system would be distorted for successive 

times, as shown in Figure 4. 

Now, consider how the graph of h against x, in a plane 

y » constant, varies with t. First take y sufficiently 

large so that C(x,y) + 0, for all x; then, initially, the 

graph is as shown in Figure 5(1). At time t., (13) shows 

hOCC2 

A 

>•   x 

> X 

Fig. 5 
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that the value of c at the point x - x, is equal to the 

value of c which was at the point x * ^, at t » 0, where 

5X "Xj - X A • 3C( ^2»y) { t,. That is, the value 

c * C(e>.,y) has been displaced to the right by an amount 

\k +  3C(^,,y) (t,. Since this quantity is greater for 

greater values of C, the graph of h becomes distorted as in 

Figure 5(11); the "negative region" (where h <  0) steepens 
whilst the "positive region" (where h > 0) flattens out. 

The positive region continues to smooth out, but, if the 

steepening of the negative region continued indefinitely, 

there would ultimately be more than one value of C at the 
(*) same point, and the wave breaks.    Clearly the latter oc- 

curs when the tangent at a point of the curve in Figure 5 

first becomes vertical. From (15) and (16) we have 

-3T * *    : Cr(g,y); 3x  1 + 3C^(^,y)t \ 

hence, the tangent becomes vertical at t - (-3C^- ( c, ,y))" . 

The first breaking occurs on the characteristic ^ * ^  for 

which |Cv-(^,y)| is a maximum, and the time of this first 

breaking is 

(22) t m 

At this time, the continuous solution breaks down (since c 

and u would cease to be single-valued functions) and a dis- 

continuous Jump in height and velocity must be included. 

Such a discontinuous "bore" propagates faster than the wave- 

lets ahead of it (the paths of the wavelets in the (x,t)~ 

plane are the characteristics) in a manner analogous to the 

T*7 Throughout this work, since the theory bears a close 
analogy to the theory of waves on shallow water, the ter- 
minology of water waves is used in a rather obvious way. 
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shocks of gas dynamics. The laws of propagation of a bore 

are obtained by stipulating that the mass of the fluid 

crossing it is conserved, and the momentum of that fluid is 

changed only by the difference of the pressure forces acting 

on either side of the bore; a certain amount of energy is 

dissipated in turbulence.  (The details are given in [6].) 

The motion of the bore can then be determined by a method 

which has been used for shocks in problems of gas dynamics 

(see [8]); only a qualitative description is given here 

since we are principally interested in events where the 

frontal surface meets the ground.  (However, as suggested by 

Tepper f7j and discussed by Freeman [31, the discontinuity 

in the height of the frontal surface may produce a sudden 

lifting of the air above, resulting In the formation of a 

squall line.) A bore travels faster than the wavelets ahead 

and more slowly than the wavelets behind.  In the present 

case, all wavelets in the negative region soon overtake and 

run into the bore; then the flow behind it is in the uniform 

undisturbed state. At the same time, the bore slowly pene- 

trates into the positive region (which is continually 

spreading out); as t -*• co, the jump in height at the bore 

tends to zero and in the remaining positive region h -*• hQ. 

The (x,t)-plane is shown in Figure 6 (see next page). 

For a plane y - constant in which C * 0 does occur, the 

steepening in the cold front and smoothing out in the warm 

front take place in a similar way (Figure 7, see next page). 

Again, the cold front breaks, and, in fact, since C is pro- 

portional to the square root of the height, C^. is infinite 

when C * 0 so that breaking commences immediately at the 

ground. But, this time there is an important difference: 

the breaking cannot be described by a bore since there must 

be a flux of mass through a bore; hence the cold front moves 

over the ground, continually breaking and turbulent, in a 

manner which is difficult to treat theoretically.  ' However 

7*7 An approximate treatment of this problem has been devel- 
oped recently and will be described in a later note. 
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we can make some deductions about its progress as follows. 

Before breaking, the velocities in the cold front region 

range from uQ - 2oQ at the ground to u in the undisturbed 

part.  In breaking, the ltter regions carrying the higher 

velocities break over the regions of lower velocity; hence, 

it is certain that the resulting turbulent front moves 

faster than uQ- 2cQ but slower than u . Thus, since the 

warm front moves over the ground with speed u- 2c , the 

cold front begins to overtake the warm front and the occlu- 

sion process commences. 

The breaking of the cold front starts at the ground and 

gradually builds up as more of the fluid behind is included. 

It would be useful to have even a rough guide to the rate at 

which it builds up and overtakes the warm front. After a 

time t, breaking will have occurred (in the sense that the 

tangent to the surface becomes vertical) at all points for 

-r' 1 which Cw(^,y) > 3 t (compare (22)). Certainly these parts 

of the fluid will have been fed into the "breaker," and it 

seems reasonable to take the velocity U of the front some- 

where between the two extremes u - 2c^ and the velocity on oo * 

\  * \   *   i.e. uQ - 2cQ + 2C(^ ,y), where \     is the value 

of ^ for which Cg>(£;fy)*^t. A very simple choice would 

be to take the mean, 

(23) U = u0 - 2c0 • C(^*,y), 

which starts at u - 2cM (as it should) and increases to- o    o 
wards u - c . (Actually the higher velocities are carried 

by deeper sections of fluid, hence the resultant velocity 

would be weighted in their favor; on the other hand, energy 

is continually being dissipated by turbulence and in over- 

coming friction at the ground.) Equation (23) is extremely 

rough but it should give the correct order of magnitude for 

the variation of U with tlm?, and also something like the 
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correct dependence upon y.  In thla way, the Intersection of 

the frontal surface with the ground would be modified as 

shown by the dotted lines in Figure 4 and ultimately the gap 

closes up. 

Of course, by the time the gap closes, this theory 

ceases to describe the motion; nevertheless there is still a 

further prediction which can be made. At the center of the 

occlusion process (at least initially) the velocity is 

uQ - 2cQ £Ji uQ - 2 Vocky but near the line of the undisturbed 

front y - 0, the velocity is u . Hence when the gap closes 

there would be a tendency to leave a cyclonic (anticlockwise) 

rotation around the center of occlusion. 

The decrease of the velocity at the fronts with y, the 

smoothly propagating warm front, the turbulent cold front, 

and the residual cyclonic circulation seem to be in agree- 

ment with observation. 

Concluding remarks 

It is hoped to do further work in this direction which 

will include:  (1) Application of the approximate theory 

(mentioned in the footnote to page 45) of waves breaking 

over the ground, to the particular case arising in the 

"breaking" cold front of Section 4. This will involve some 

numerical Integration.  (11) Evaluation of the velocity v 

(obtained in Section 3) in some typical case; again numeri- 

cal computation is necessary. 

If the simple waves, discussed in detail here, are 

found to be inadequate for an understanding of the motion, 

it will be necessary to solve the approximate equations (5), 

(6), and (7) numerically. It may be remarked that the way 

in which such a solution would be carried out is quite stan- 

dard and well-known, and should not give rise to any addi- 

tional difficulties; the difficulty of the wave breaking at 

the intersection of the discontinuity surface with the 

ground on the cold front side is still expected to arise. 

> »" 
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